Перевод: с русского на все языки

со всех языков на русский

Множество (тип данных)

  • 1 тип данных

    1. data type

     

    тип данных
    Множество величин, объединенных определенной совокупностью допустимых операций.
    [ИСО/МЭК 2382-15]
    [ ГОСТ Р 52292-2004]

    тип данных
    тип

    Множество значений вместе с множеством допустимых над ними операций
    [ ГОСТ 28397-89]

    тип данных
    В программировании тип данных определяет множество допустимых значений объекта (переменной, константы, массива и пр.), формат хранения, размер выделяемой памяти и т.д.
    [ http://www.morepc.ru/dict/]


    Тематики

    EN

    2.35 тип данных (data type): Поименованная совокупность данных с общими статическими и динамическими свойствами, устанавливаемыми формализованными требованиями к данным рассматриваемого типа.

    Источник: ГОСТ Р ИСО/МЭК ТО 10032-2007: Эталонная модель управления данными

    3.2 тип данных (data type): Характер данных.

    Примечание - Типом данных могут быть единицы измерения, количественные данные, короткая строка, свободный текст, числовые, логические данные.

    Источник: ГОСТ Р ИСО/ТС 14048-2009: Экологический менеджмент. Оценка жизненного цикла. Формат документирования данных

    7.4.2 тип данных (data type): Характер данных.

    Примечание - Единицы измерения, количественные, короткая строка, свободный текст, числовые, логические значения.

    [ИСО/ТС 14048:2002]

    Источник: ГОСТ Р ИСО 14050-2009: Менеджмент окружающей среды. Словарь оригинал документа

    Русско-английский словарь нормативно-технической терминологии > тип данных

  • 2 тип данных элемента данных

    1. DE datatype
    2. Data Element Datatype

    3.1.6 тип данных элемента данных (Data Element Datatype; DE datatype): Спецификация множества различных значений для элемента данных, характеризуемая свойствами этих значений и возможными операциями над этими значениями.

    Примечание 1 - Множество различных значений, определенное значением типа данных элемента модели данных, может быть ограничено подмножеством, основанным на спецификации или стандарте, который принят внешним по отношению к модели данных. Ссылка на эту внешнюю спецификацию или стандарт приведена в качестве значения подходящего элемента данных в модели данных. Какой элемент данных обеспечивает ссылку на эту внешнюю спецификацию или стандарт, указано в том же месте, где определен тип данных элемента данных.

    Примечание 2 - Термин адаптирован из ИСО/МЭК ТО 11404-3:1996, определение 4.11.

    Источник: ГОСТ Р ИСО/МЭК 19778-1-2011: Информационная технология. Обучение, образование и подготовка. Технология сотрудничества. Общее рабочее пространство. Часть 1. Модель данных общего рабочего пространства оригинал документа

    Русско-английский словарь нормативно-технической терминологии > тип данных элемента данных

  • 3 тип данных: множество величин, объединённых определенной совокупностью допустимых операций

    Универсальный русско-английский словарь > тип данных: множество величин, объединённых определенной совокупностью допустимых операций

  • 4 составной тип

    adj
    1) IT. strukturierter Datentyp (тип данных, элементы которого состоят из нескольких (многих) компонент; к составному типу данных принадлежат: массив, множество, запись, файл, строка), zusammengesetzter Datentyp (тип данных, элементы которого состоят из нескольких (многих) компонент; к составному типу данных принадлежат: массив, множество, запись, файл, строка)
    2) progr. strukturierter Typ (тип данных, элементы которого состоят из нескольких (многих) компонент; к составному типу данных принадлежат: массив, множество, запись, файл, строка), zusammengesetzter Typ (тип данных, элементы которого состоят из нескольких (многих) компонент; к составному типу данных принадлежат: массив, множество, запись, файл, строка)

    Универсальный русско-немецкий словарь > составной тип

  • 5 роль

    1. role

     

    роль
    Набор ответственностей, деятельностей и полномочий, назначенных сотруднику или команде. Роль определяется в процессе или функции. Один сотрудник или команда может иметь несколько ролей. Например, роли менеджера конфигураций и менеджера изменений могут выполняться одним сотрудником. Этот термин также используется для описания назначения чего-либо.
    [Словарь терминов ITIL версия 1.0, 29 июля 2011 г.]

    EN

    role
    A set of responsibilities, activities and authorities assigned to a person or team. A role is defined in a process or function. One person or team may have multiple roles for example, the roles of configuration manager and change manager may be carried out by a single person. Role is also used to describe the purpose of something or what it is used for.
    [Словарь терминов ITIL версия 1.0, 29 июля 2011 г.]

    Тематики

    EN

    роль (role): Наименование поведенческого набора, связанного с выполнением какой-либо работы (ИСО/ТС 17090-1).

    Источник: ГОСТ Р ИСО/ТС 18308-2008: Информатизация здоровья. Требования к архитектуре электронного учета здоровья

    3.2.10 роль (role): Перечень или список прав и обязанностей, установленных для потенциального или действительного члена группы взаимодействия.

    Примечание - При назначении одной или нескольких ролей члену группы взаимодействия совокупные права и обязанности, связанные с ролью(ями), передаются этому участнику.

    Пример - Ссылка на элемент модели данных идентификатора элемента модели данных 1.3. 2 настоящего стандарта (CW_ID_ value) в другом стандарте технологий взаимодействия должна выглядеть в виде ссылки «ИСО/ МЭК 19778-1: 2008, 1.3..

    b) Обозначение

    Обозначение элемента модели данных (см. определение 3.1.11).

    Обозначения элемента модели данных используются в контексте стандартов технологий взаимодействия для установления ссылок на конкретные элементы модели данных. В отличие от лингвистически нейтральных атрибутов элементов модели данных у обозначения элемента модели данных есть символическое значение; но в то же время данный атрибут может быть ориентирован на конкретный язык и может быть предметом интернационализации.

    c) Определение

    Определение элемента модели данных (см. определение 3.1.10).

    Поскольку определения представлены в таблице модели данных в наиболее компактной форме, дополнительная информация об элементах модели данных приведена в отдельном подпункте стандартов исключительно для пояснения. Во всех стандартах технологии взаимодействия определение элемента модели данных, записанное в ячейках таблицы в 3-й колонке, считают наиболее аутентичным.

    d) Степень обязательности

    Степень обязательности элемента модели данных (см. определение 3.1.15).

    При создании реализаций модели данных из модели данных степень обязательности элемента модели данных любого элемента модели данных должна исходить из степени обязательности соответствующего предка. Для модели данных это означает, что элементы модели данных со степенью обязательности элемента модели данных «выбираемый» могут иметь потомков со статусом «обязательный». В случае если любой элемент модели данных со степенью обязательности элемента модели данных «обязательный» имеет единственного потомка со статусом «выбираемый», любая реализация этой модели данных предоставляет одного или более потомка элемента данных в реализации этого элемента модели данных.

    Определены четыре возможных значения степени обязательности элемента модели данных: обязательный, выбираемый, условно обязательный и условно выбираемый.

    e) Множественность

    Множественность элемента модели данных (см. определение 3.1.14).

    Значения для диапазона значений элементов модели данных (в других источниках также определенных как «повторяемость элементов») определяют, насколько часто реализация элемента модели данных может встречаться в этой реализации модели данных.

    В реализациях моделей данных многочисленные реализации элемента данных, как правило, должны быть расположены рядом друг с другом, в то время как реализации многочисленных составных элементов (совокупных подструктур) являются результатом реализации в этих подструктурах, представленных в смежном или последовательном порядке. По умолчанию, не важен порядок размещения или перечисления реализаций разнообразных элементов модели данных. Исключение вводят примечанием об указании особого порядка представления информации в данной ячейке строки таблицы элемента модели данных.

    Необходимый минимум реализаций элемента модели данных будет принят больше нуля (даже если установлен на нуль) в тех случаях, когда степень обязательности элемента модели данных имеет значение «обязательный».

    В тех случаях, когда два значения (необходимый минимум и допустимый максимум) различаются, интервал определяют как строку связанных символов «< необходимый минимум>..< допустимый максимум>», где значения < необходимый минимум> и < допустимый максимум> - неотрицательные целые числа.

    Для указания на бесконечное множество допустимых значений параметр < допустимый максимум> записывают с символом «*».

    В тех случаях, когда два значения (необходимый минимум и допустимый максимум) совпадают, устанавливают только одно значение.

    f) Тип данных

    Тип данных, определяющий элемент данных (см. определение 3.1.6).

    В стандартах технологии взаимодействия установлено множество возможных значений для данного элемента модели данных в качестве значения типа данных элемента данных. Множество значений может быть ограничено конкретным набором значений, основанным на спецификации или стандарте, не относящемся к модели данных. Ссылка на эту внешнюю спецификацию или стандарт должна быть приведена в качестве значения соответствующего элемента данных модели данных. Модели данных, определенные в стандартах технологии взаимодействия, предоставляют структуры элемента данных и элемента модели данных специально для включения таких ссылок.

    При использовании таких ссылок элемент данных, включающий в себя ссылки, должен быть указан в колонке «Тип данных».

    g) Примеры

    Могут содержать одну или несколько иллюстраций возможных значений элемента данных.

    Источник: ГОСТ Р ИСО/МЭК 19778-1-2011: Информационная технология. Обучение, образование и подготовка. Технология сотрудничества. Общее рабочее пространство. Часть 1. Модель данных общего рабочего пространства оригинал документа

    3.134 роль (role): Поименованное специфическое поведение сущности, участвующей в определенном контексте.

    Примечание - Роль может быть статической (например, конец соединения) или динамической (например, коллективная роль).

    Источник: ГОСТ Р 54136-2010: Системы промышленной автоматизации и интеграция. Руководство по применению стандартов, структура и словарь оригинал документа

    Русско-английский словарь нормативно-технической терминологии > роль

  • 6 технология коммутации

    1. switching technology

     

    технология коммутации
    -
    [Интент]

    Современные технологии коммутации
    [ http://www.xnets.ru/plugins/content/content.php?content.84]

    Статья подготовлена на основании материалов опубликованных в журналах "LAN", "Сети и системы связи", в книге В.Олифер и Н.Олифер "Новые технологии и оборудование IP-сетей", на сайтах www.citforum.ru и опубликована в журнале "Компьютерные решения" NN4-6 за 2000 год.

    Введение

    На сегодня практически все организации, имеющие локальные сети, остановили свой выбор на сетях типа Ethernet. Данный выбор оправдан тем, что начало внедрения такой сети сопряжено с низкой стоимостью и простотой реализации, а развитие - с хорошей масштабируемостью и экономичностью.

    Бросив взгляд назад - увидим, что развитие активного оборудования сетей шло в соответствии с требованиями к полосе пропускания и надежности. Требования, предъявляемые к большей надежности, привели к отказу от применения в качестве среды передачи коаксиального кабеля и перевода сетей на витую пару. В результате такого перехода отказ работы соединения между одной из рабочих станций и концентратором перестал сказываться на работе других рабочих станций сети. Но увеличения производительности данный переход не принес, так как концентраторы используют разделяемую (на всех пользователей в сегменте) полосу пропускания. По сути, изменилась только физическая топология сети - с общей шины на звезду, а логическая топология по-прежнему осталась - общей шиной.

    Дальнейшее развитие сетей шло по нескольким путям:

    • увеличение скорости,
    • внедрение сегментирования на основе коммутации,
    • объединение сетей при помощи маршрутизации.

    Увеличение скорости при прежней логической топологии - общая шина, привело к незначительному росту производительности в случае большого числа портов.

    Большую эффективность в работе сети принесло сегментирование сетей с использованием технология коммутации пакетов. Коммутация наиболее действенна в следующих вариантах:

    Вариант 1, именуемый связью "многие со многими" – это одноранговые сети, когда одновременно существуют потоки данных между парами рабочих станций. При этом предпочтительнее иметь коммутатор, у которого все порты имеют одинаковую скорость, (см. Рисунок 1).

    5001

    Вариант 2, именуемый связью "один со многими" – это сети клиент-сервер, когда все рабочие станции работают с файлами или базой данных сервера. В данном случае предпочтительнее иметь коммутатор, у которого порты для подключения рабочих станций имеют одинаковую небольшую скорость, а порт, к которому подключается сервер, имеет большую скорость,(см. Рисунок 2).

    5002

    Когда компании начали связывать разрозненные системы друг с другом, маршрутизация обеспечивала максимально возможную целостность и надежность передачи трафика из одной сети в другую. Но с ростом размера и сложности сети, а также в связи со все более широким применением коммутаторов в локальных сетях, базовые маршрутизаторы (зачастую они получали все данные, посылаемые коммутаторами) стали с трудом справляться со своими задачами.

    Проблемы с трафиком, связанные с маршрутизацией, проявляются наиболее остро в средних и крупных компаниях, а также в деятельности операторов Internet, так как они вынуждены иметь дело с большими объемами IP-трафика, причем этот трафик должен передаваться своевременно и эффективно.

    С подключением настольных систем непосредственно к коммутаторам на 10/100 Мбит/с между ними и магистралью оказывается все меньше промежуточных устройств. Чем выше скорость подключения настольных систем, тем более скоростной должна быть магистраль. Кроме того, на каждом уровне устройства должны справляться с приходящим трафиком, иначе возникновения заторов не избежать.

    Рассмотрению технологий коммутации и посвящена данная статья.

    Коммутация первого уровня

    Термин "коммутация первого уровня" в современной технической литературе практически не описывается. Для начала дадим определение, с какими характеристиками имеет дело физический или первый уровень модели OSI:

    физический уровень определяет электротехнические, механические, процедурные и функциональные характеристики активации, поддержания и дезактивации физического канала между конечными системами. Спецификации физического уровня определяют такие характеристики, как уровни напряжений, синхронизацию изменения напряжений, скорость передачи физической информации, максимальные расстояния передачи информации, физические соединители и другие аналогичные характеристики.

    Смысл коммутации на первом уровне модели OSI означает физическое (по названию уровня) соединение. Из примеров коммутации первого уровня можно привести релейные коммутаторы некоторых старых телефонных и селекторных систем. В более новых телефонных системах коммутация первого уровня применяется совместно с различными способами сигнализации вызовов и усиления сигналов. В сетях передачи данных данная технология применяется в полностью оптических коммутаторах.

    Коммутация второго уровня

    Рассматривая свойства второго уровня модели OSI и его классическое определение, увидим, что данному уровню принадлежит основная доля коммутирующих свойств.

    Определение. Канальный уровень (формально называемый информационно-канальным уровнем) обеспечивает надежный транзит данных через физический канал. Канальный уровень решает вопросы физической адресации (в противоположность сетевой или логической адресации), топологии сети, линейной дисциплины (каким образом конечной системе использовать сетевой канал), уведомления о неисправностях, упорядоченной доставки блоков данных и управления потоком информации.

    На самом деле, определяемая канальным уровнем модели OSI функциональность служит платформой для некоторых из сегодняшних наиболее эффективных технологий. Большое значение функциональности второго уровня подчеркивает тот факт, что производители оборудования продолжают вкладывать значительные средства в разработку устройств с такими функциями.

    С технологической точки зрения, коммутатор локальных сетей представляет собой устройство, основное назначение которого - максимальное ускорение передачи данных за счет параллельно существующих потоков между узлами сети. В этом - его главное отличие от других традиционных устройств локальных сетей – концентраторов (Hub), предоставляющих всем потокам данных сети всего один канал передачи данных.

    Коммутатор позволяет передавать параллельно несколько потоков данных c максимально возможной для каждого потока скоростью. Эта скорость ограничена физической спецификацией протокола, которую также часто называют "скоростью провода". Это возможно благодаря наличию в коммутаторе большого числа центров обработки и продвижения кадров и шин передачи данных.

    Коммутаторы локальных сетей в своем основном варианте, ставшем классическим уже с начала 90-х годов, работают на втором уровне модели OSI, применяя свою высокопроизводительную параллельную архитектуру для продвижения кадров канальных протоколов. Другими словами, ими выполняются алгоритмы работы моста, описанные в стандартах IEEE 802.1D и 802.1H. Также они имеют и много других дополнительных функций, часть которых вошла в новую редакцию стандарта 802.1D-1998, а часть остается пока не стандартизованной.

    Коммутаторы ЛВС отличаются большим разнообразием возможностей и, следовательно, цен - стоимость 1 порта колеблется в диапазоне от 50 до 1000 долларов. Одной из причин столь больших различий является то, что они предназначены для решения различных классов задач. Коммутаторы высокого класса должны обеспечивать высокую производительность и плотность портов, а также поддерживать широкий спектр функций управления. Простые и дешевые коммутаторы имеют обычно небольшое число портов и не способны поддерживать функции управления. Одним из основных различий является используемая в коммутаторе архитектура. Поскольку большинство современных коммутаторов работают на основе патентованных контроллеров ASIC, устройство этих микросхем и их интеграция с остальными модулями коммутатора (включая буферы ввода-вывода) играет важнейшую роль. Контроллеры ASIC для коммутаторов ЛВС делятся на 2 класса - большие ASIC, способные обслуживать множество коммутируемых портов (один контроллер на устройство) и небольшие ASIC, обслуживающие по несколько портов и объединяемые в матрицы коммутации.

    Существует 3 варианта архитектуры коммутаторов:
     

    На рисунке 3 показана блок-схема коммутатора с архитектурой, используемой для поочередного соединения пар портов. В любой момент такой коммутатор может обеспечить организацию только одного соединения (пара портов). При невысоком уровне трафика не требуется хранение данных в памяти перед отправкой в порт назначения - такой вариант называется коммутацией на лету cut-through. Однако, коммутаторы cross-bar требуют буферизации на входе от каждого порта, поскольку в случае использования единственно возможного соединения коммутатор блокируется (рисунок 4). Несмотря на малую стоимость и высокую скорость продвижения на рынок, коммутаторы класса cross-bar слишком примитивны для эффективной трансляции между низкоскоростными интерфейсами Ethernet или token ring и высокоскоростными портами ATM и FDDI.

    5003

    5004

    Коммутаторы с разделяемой памятью имеют общий входной буфер для всех портов, используемый как внутренняя магистраль устройства (backplane). Буферизагия данных перед их рассылкой (store-and-forward - сохранить и переслать) приводит к возникновению задержки. Однако, коммутаторы с разделяемой памятью, как показано на рисунке 5 не требуют организации специальной внутренней магистрали для передачи данных между портами, что обеспечивает им более низкую цену по сравнению с коммутаторами на базе высокоскоростной внутренней шины.

    5005

    На рисунке 6 показана блок-схема коммутатора с высокоскоростной шиной, связывающей контроллеры ASIC. После того, как данные преобразуются в приемлемый для передачи по шине формат, они помещаются на шину и далее передаются в порт назначения. Поскольку шина может обеспечивать одновременную (паралельную) передачу потока данных от всех портов, такие коммутаторы часто называют "неблокируемыми" (non-blocking) - они не создают пробок на пути передачи данных.

    5006

    Применение аналогичной параллельной архитектуры для продвижения пакетов сетевых протоколов привело к появлению коммутаторов третьего уровня модели OSI.

    Коммутация третьего уровня

    В продолжении темы о технологиях коммутации рассмотренных в предыдущем номера повторим, что применение параллельной архитектуры для продвижения пакетов сетевых протоколов привело к появлению коммутаторов третьего уровня. Это позволило существенно, в 10-100 раз повысить скорость маршрутизации по сравнению с традиционными маршрутизаторами, в которых один центральный универсальный процессор выполняет программное обеспечение маршрутизации.

    По определению Сетевой уровень (третий) - это комплексный уровень, который обеспечивает возможность соединения и выбор маршрута между двумя конечными системами, подключенными к разным "подсетям", которые могут находиться в разных географических пунктах. В данном случае "подсеть" это, по сути, независимый сетевой кабель (иногда называемый сегментом).

    Коммутация на третьем уровне - это аппаратная маршрутизация. Традиционные маршрутизаторы реализуют свои функции с помощью программно-управляемых процессоров, что будем называть программной маршрутизацией. Традиционные маршрутизаторы обычно продвигают пакеты со скоростью около 500000 пакетов в секунду. Коммутаторы третьего уровня сегодня работают со скоростью до 50 миллионов пакетов в секунду. Возможно и дальнейшее ее повышение, так как каждый интерфейсный модуль, как и в коммутаторе второго уровня, оснащен собственным процессором продвижения пакетов на основе ASIC. Так что наращивание количества модулей ведет к наращиванию производительности маршрутизации. Использование высокоскоростной технологии больших заказных интегральных схем (ASIC) является главной характеристикой, отличающей коммутаторы третьего уровня от традиционных маршрутизаторов. Коммутаторы 3-го уровня делятся на две категории: пакетные (Packet-by-Packet Layer 3 Switches, PPL3) и сквозные (Cut-Through Layer 3 Switches, CTL3). PPL3 - означает просто быструю маршрутизацию (Рисунок_7). CTL3 – маршрутизацию первого пакета и коммутацию всех остальных (Рисунок 8).

    5007

    5008

    У коммутатора третьего уровня, кроме реализации функций маршрутизации в специализированных интегральных схемах, имеется несколько особенностей, отличающих их от традиционных маршрутизаторов. Эти особенности отражают ориентацию коммутаторов 3-го уровня на работу, в основном, в локальных сетях, а также последствия совмещения в одном устройстве коммутации на 2-м и 3-м уровнях:
     

    • поддержка интерфейсов и протоколов, применяемых в локальных сетях,
    • усеченные функции маршрутизации,
    • обязательная поддержка механизма виртуальных сетей,
    • тесная интеграция функций коммутации и маршрутизации, наличие удобных для администратора операций по заданию маршрутизации между виртуальными сетями.

    Наиболее "коммутаторная" версия высокоскоростной маршрутизации выглядит следующим образом (рисунок 9). Пусть коммутатор третьего уровня построен так, что в нем имеется информация о соответствии сетевых адресов (например, IP-адресов) адресам физического уровня (например, MAC-адресам) Все эти МАС-адреса обычным образом отображены в коммутационной таблице, независимо от того, принадлежат ли они данной сети или другим сетям.

    5009

    Первый коммутатор, на который поступает пакет, частично выполняет функции маршрутизатора, а именно, функции фильтрации, обеспечивающие безопасность. Он решает, пропускать или нет данный пакет в другую сеть Если пакет пропускать нужно, то коммутатор по IP-адресу назначения определяет МАС-адрес узла назначения и формирует новый заголовок второго уровня с найденным МАС-адресом. Затем выполняется обычная процедура коммутации по данному МАС-адресу с просмотром адресной таблицы коммутатора. Все последующие коммутаторы, построенные по этому же принципу, обрабатывают данный кадр как обычные коммутаторы второго уровня, не привлекая функций маршрутизации, что значительно ускоряет его обработку. Однако функции маршрутизации не являются для них избыточными, поскольку и на эти коммутаторы могут поступать первичные пакеты (непосредственно от рабочих станций), для которых необходимо выполнять фильтрацию и подстановку МАС-адресов.

    Это описание носит схематический характер и не раскрывает способов решения возникающих при этом многочисленных проблем, например, проблемы построения таблицы соответствия IP-адресов и МАС-адресов

    Примерами коммутаторов третьего уровня, работающих по этой схеме, являются коммутаторы SmartSwitch компании Cabletron. Компания Cabletron реализовала в них свой протокол ускоренной маршрутизации SecureFast Virtual Network, SFVN.

    Для организации непосредственного взаимодействия рабочих станций без промежуточного маршрутизатора необходимо сконфигурировать каждую из них так, чтобы она считала собственный интерфейс маршрутизатором по умолчанию. При такой конфигурации станция пытается самостоятельно отправить любой пакет конечному узлу, даже если этот узел находится в другой сети. Так как в общем случае (см. рисунок 10) станции неизвестен МАС-адрес узла назначения, то она генерирует соответствующий ARP-запрос, который перехватывает коммутатор, поддерживающий протокол SFVN. В сети предполагается наличие сервера SFVN Server, являющегося полноценным маршрутизатором и поддерживающего общую ARP-таблицу всех узлов SFVN-сети. Сервер возвращает коммутатору МАС-адрес узла назначения, а коммутатор, в свою очередь, передает его исходной станции. Одновременно сервер SFVN передает коммутаторам сети инструкции о разрешении прохождения пакета с МАС-адресом узла назначения через границы виртуальных сетей. Затем исходная станция передает пакет в кадре, содержащем МАС-адрес узла назначения. Этот кадр проходит через коммутаторы, не вызывая обращения к их блокам маршрутизации. Отличие протокола SFVN компании Cabletron от - описанной выше общей схемы в том, что для нахождения МАС-адреса по IP-адресу в сети используется выделенный сервер.

    5010

    Протокол Fast IP компании 3Com является еще одним примером реализации подхода с отображением IP-адреса на МАС-адрес. В этом протоколе основными действующими лицами являются сетевые адаптеры (что не удивительно, так как компания 3Com является признанным лидером в производстве сетевых адаптеров Ethernet) С одной стороны, такой подход требует изменения программного обеспечения драйверов сетевых адаптеров, и это минус Но зато не требуется изменять все остальное сетевое оборудование.

    При необходимости передать пакет узлу назначения другой сети, исходный узел в соответствии с технологией Fast IP должен передать запрос по протоколу NHRP (Next Hop Routing Protocol) маршрутизатору сети. Маршрутизатор переправляет этот запрос узлу назначения, как обычный пакет Узел назначения, который также поддерживает Fast IP и NHRP, получив запрос, отвечает кадром, отсылаемым уже не маршрутизатору, а непосредственно узлу-источнику (по его МАС-адресу, содержащемуся в NHRP-запросе). После этого обмен идет на канальном уровне на основе известных МАС-адресов. Таким образом, снова маршрутизировался только первый пакет потока (как на рисунке 9 кратковременный поток), а все остальные коммутировались (как на рисунке 9 долговременный поток).

    Еще один тип коммутаторов третьего уровня — это коммутаторы, работающие с протоколами локальных сетей типа Ethernet и FDDI. Эти коммутаторы выполняют функции маршрутизации не так, как классические маршрутизаторы. Они маршрутизируют не отдельные пакеты, а потоки пакетов.

    Поток — это последовательность пакетов, имеющих некоторые общие свойства. По меньшей мере, у них должны совпадать адрес отправителя и адрес получателя, и тогда их можно отправлять по одному и тому же маршруту. Если классический способ маршрутизации использовать только для первого пакета потока, а все остальные обрабатывать на основании опыта первого (или нескольких первых) пакетов, то можно значительно ускорить маршрутизацию всего потока.

    Рассмотрим этот подход на примере технологии NetFlow компании Cisco, реализованной в ее маршрутизаторах и коммутаторах. Для каждого пакета, поступающего на порт маршрутизатора, вычисляется хэш-функция от IP-адресов источника, назначения, портов UDP или TCP и поля TOS, характеризующего требуемое качество обслуживания. Во всех маршрутизаторах, поддерживающих данную технологию, через которые проходит данный пакет, в кэш-памяти портов запоминается соответствие значения хэш-функции и адресной информации, необходимой для быстрой передачи пакета следующему маршрутизатору. Таким образом, образуется квазивиртуальный канал (см. Рисунок 11), который позволяет быстро передавать по сети маршрутизаторов все последующие пакеты этого потока. При этом ускорение достигается за счет упрощения процедуры обработки пакета маршрутизатором - не просматриваются таблицы маршрутизации, не выполняются ARP-запросы.

    5011

    Этот прием может использоваться в маршрутизаторах, вообще не поддерживающих коммутацию, а может быть перенесен в коммутаторы. В этом случае такие коммутаторы тоже называют коммутаторами третьего уровня. Примеров маршрутизаторов, использующих данный подход, являются маршрутизаторы Cisco 7500, а коммутаторов третьего уровня — коммутаторы Catalyst 5000 и 5500. Коммутаторы Catalyst выполняют усеченные функции описанной схемы, они не могут обрабатывать первые пакеты потоков и создавать новые записи о хэш-функциях и адресной информации потоков. Они просто получают данную информацию от маршрутизаторов 7500 и обрабатывают пакеты уже распознанных маршрутизаторами потоков.

    Выше был рассмотрен способ ускоренной маршрутизации, основанный на концепции потока. Его сущность заключается в создании квазивиртуальных каналов в сетях, которые не поддерживают виртуальные каналы в обычном понимании этого термина, то есть сетях Ethernet, FDDI, Token Ring и т п. Следует отличать этот способ от способа ускоренной работы маршрутизаторов в сетях, поддерживающих технологию виртуальных каналов — АТМ, frame relay, X 25. В таких сетях создание виртуального канала является штатным режимом работы сетевых устройств. Виртуальные каналы создаются между двумя конечными точками, причем для потоков данных, требующих разного качества обслуживания (например, для данных разных приложений) может создаваться отдельный виртуальный канал. Хотя время создания виртуального канала существенно превышает время маршрутизации одного пакета, выигрыш достигается за счет последующей быстрой передачи потока данных по виртуальному каналу. Но в таких сетях возникает другая проблема — неэффективная передача коротких потоков, то есть потоков, состоящих из небольшого количества пакетов (классический пример — пакеты протокола DNS).

    Накладные расходы, связанные с созданием виртуального канала, приходящиеся на один пакет, снижаются при передаче объемных потоков данных. Однако они становятся неприемлемо высокими при передаче коротких потоков. Для того чтобы эффективно передавать короткие потоки, предлагается следующий вариант, при передаче нескольких первых пакетов выполняется обычная маршрутизация. Затем, после того как распознается устойчивый поток, для него строится виртуальный канал, и дальнейшая передача данных происходит с высокой скоростью по этому виртуальному каналу. Таким образом, для коротких потоков виртуальный канал вообще не создается, что и повышает эффективность передачи.

    По такой схеме работает ставшая уже классической технология IP Switching компании Ipsilon. Для того чтобы сети коммутаторов АТМ передавали бы пакеты коротких потоков без установления виртуального канала, компания Ipsilon предложила встроить во все коммутаторы АТМ блоки IP-маршрутизации (рисунок 12), строящие обычные таблицы маршрутизации по обычным протоколам RIP и OSPF.

    5012

    Компания Cisco Systems выдвинула в качестве альтернативы технологии IP Switching свою собственную технологию Tag Switching, но она не стала стандартной. В настоящее время IETF работает над стандартным протоколом обмена метками MPLS (Multi-Protocol Label Switching), который обобщает предложение компаний Ipsilon и Cisco, а также вносит некоторые новые детали и механизмы. Этот протокол ориентирован на поддержку качества обслуживания для виртуальных каналов, образованных метками.

    Коммутация четвертого уровня

    Свойства четвертого или транспортного уровня модели OSI следующие: транспортный уровень обеспечивает услуги по транспортировке данных. В частности, заботой транспортного уровня является решение таких вопросов, как выполнение надежной транспортировки данных через объединенную сеть. Предоставляя надежные услуги, транспортный уровень обеспечивает механизмы для установки, поддержания и упорядоченного завершения действия виртуальных каналов, систем обнаружения и устранения неисправностей транспортировки и управления информационным потоком (с целью предотвращения переполнения данными из другой системы).

    Некоторые производители заявляют, что их системы могут работать на втором, третьем и даже четвертом уровнях. Однако рассмотрение описания стека TCP/IP (рисунок 1), а также структуры пакетов IP и TCP (рисунки 2, 3), показывает, что коммутация четвертого уровня является фикцией, так как все относящиеся к коммутации функции осуществляются на уровне не выше третьего. А именно, термин коммутация четвертого уровня с точки зрения описания стека TCP/IP противоречий не имеет, за исключением того, что при коммутации должны указываться адреса компьютера (маршрутизатора) источника и компьютера (маршрутизатора) получателя. Пакеты TCP имеют поля локальный порт отправителя и локальный порт получателя (рисунок 3), несущие смысл точек входа в приложение (в программу), например Telnet с одной стороны, и точки входа (в данном контексте инкапсуляции) в уровень IP. Кроме того, в стеке TCP/IP именно уровень TCP занимается формированием пакетов из потока данных идущих от приложения. Пакеты IP (рисунок 2) имеют поля адреса компьютера (маршрутизатора) источника и компьютера (маршрутизатора) получателя и следовательно могут наряду с MAC адресами использоваться для коммутации. Тем не менее, название прижилось, к тому же практика показывает, что способность системы анализировать информацию прикладного уровня может оказаться полезной — в частности для управления трафиком. Таким образом, термин "зависимый от приложения" более точно отражает функции так называемых коммутаторов четвертого уровня.

    5013

    5014

    5015

    Тематики

    EN

    Русско-английский словарь нормативно-технической терминологии > технология коммутации

  • 7 полевая шина

    1. fieldbus
    2. field bus

     

    полевая шина
    -
    [Интент]

    полевая магистраль по зарубежной терминологии
    Имеет много терминов-синонимов и обозначает специализированные последовательные магистрали малых локальных сетей (МЛС), ориентированны на сопряжение с ЭВМ рассредоточенных цифровых датчиков и исполнительных органов. Магистрали рассчитаны на применение в машиностроении, химической промышленности, в системах автоматизации зданий, крупных установках, бытовых электронных системах, системах автомобильного оборудования, малых контрольно-измерительных и управляющих системах на основе встраиваемых микроЭВМ и т. п. Основными магистралями являются Bitbus, MIL STD-1553В. В настоящее время рабочими группами IEC (65С и SP-50) стандартизируются два основных типа МЛС: высокоскоростные и низкоскоростные, ориентированные на датчики.
    [Е.С.Алексеев, А.А.Мячев. Англо-русский толковый словарь по системотехнике ЭВМ. Москва 1993]

    ЧТО ТАКОЕ FIELDВUS?
    Так пишется оригинальный термин, который в русском переводе звучит как «промышленная сеть». Fieldbus — это не какой-то определенный протокол передачи данных и не тип сетевой архитектуры, этот термин не принадлежит ни одной отдельно взятой компании и обозначает скорее сферу применения, чем какую-либо конкретную сетевую технологию.
    Давайте попробуем сформулировать лишь некоторые основные требования, которые можно предъявить к «идеальной» промышленной сети.
    1. Производительность.
    2. Предсказуемость времени доставки информации.
    3. Помехоустойчивость.
    4. Доступность и простота организации физического канала передачи данных.
    5. Максимальный сервис для приложений верхнего уровня.
    6. Минимальная стоимость устройств аппаратной реализации, особенно на уровне контроллеров.
    7. Возможность получения «распределенного интеллекта», путем предоставления максимального доступа к каналу нескольким ведущим узлам.
    8.Управляемость и самовосстановление в случае возникновения нештатных ситуаций.

    [Сергей Гусев. Краткий экскурс в историю промышленных сетей]


    Международный стандарт IEC 61158 “Fieldbus for use in Industrial Control Systems” («Промышленная управляющая сеть для применения в промышленных системах управления») определяет восемь независимых и несовместимых коммуникационных технологий, из которых FOUNDATION Fieldbus H1 и PROFIBUS PA стали в значительной степени преобладающими в различных отраслях промышленности.
    Эти промышленные сети соответствуют требованиям стандарта IEC 61158 2, который устанавливает физический уровень так называемых промышленных сетей H1.
    Основными требованиями к промышленным сетям H1 являются:
    ● передача данных и питание устройств нижнего уровня по одной витой паре;
    ● гибкость при проектировании различных топологий сети;
    ● совместимость всех полевых приборов;
    ● взрывобезопасность при установкево взрывоопасных зонах;
    ● распределение одной инфраструктуры на многочисленные сегменты.

    [Виктор Жданкин. Концепция FieldConnex® для промышленных сетей FOUNDATION Fieldbus H1 и PROFIBUS_PA: повышение производительности и снижение затрат. СТА 2/2009]


    Термин полевая шина является дословным переводом английского термина fieldbus.
    Термин промышленная сеть является более точным переводом и в настоящее время именно он используется в профессиональной технической литературе.

    Промышленная сеть — сеть передачи данных, связывающая различные датчики, исполнительные механизмы, промышленные контроллеры и используемая в промышленной автоматизации. Термин употребляется преимущественно в автоматизированной системе управления технологическими процессами (АСУТП).

    Устройства используют сеть для:

    • передачи данных, между датчиками, контроллерами и исполнительными механизмами;
    • диагностики и удалённого конфигурирования датчиков и исполнительных механизмов;
    • калибрования датчиков;
    • питания датчиков и исполнительных механизмов;
    • связи между датчиками, исполнительными механизмами, ПЛК и АСУ ТП верхнего уровня.

    В промышленных сетях для передачи данных применяют:

    • электрические линии;
    • волоконно-оптические линии;
    • беспроводную связь (радиомодемы и Wi-Fi).

    Промышленные сети могут взаимодействовать с обычными компьютерными сетями, в частности использовать глобальную сеть Internet.

    [ Википедия]


    Главной функцией полевой шины является обеспечение сетевого взаимодействия между контроллерами и удаленной периферией (например, узлами ввода/вывода). Помимо этого, к полевой шине могут подключаться различные контрольно-измерительные приборы ( Field Devices), снабженные соответствующими сетевыми интерфейсами. Такие устройства часто называют интеллектуальными ( Intelligent Field Devices), так как они поддерживают высокоуровневые протоколы сетевого обмена.

    Пример полевой шины представлен на рисунке 1.

    4911
    Рис. 1. Полевая шина.

    Как уже было отмечено, существует множество стандартов полевых шин, наиболее распространенные из которых приведены ниже:

    1. Profibus DP
    2. Profibus PA
    3. Foundation Fieldbus
    4. Modbus RTU
    5. HART
    6. DeviceNet

    Несмотря на нюансы реализации каждого из стандартов (скорость передачи данных, формат кадра, физическая среда), у них есть одна общая черта – используемый алгоритм сетевого обмена данными, основанный на классическом принципе Master-Slave или его небольших модификациях.
    Современные полевые шины удовлетворяют строгим техническим требованиям, благодаря чему становится возможной их эксплуатация в тяжелых промышленных условиях. К этим требованиям относятся:

    1. Детерминированность. Под этим подразумевается, что передача сообщения из одного узла сети в другой занимает строго фиксированный отрезок времени. Офисные сети, построенные по технологии Ethernet, - это отличный пример недетерминированной сети. Сам алгоритм доступа к разделяемой среде по методу CSMA/CD не определяет время, за которое кадр из одного узла сети будет передан другому, и, строго говоря, нет никаких гарантий, что кадр вообще дойдет до адресата. Для промышленных сетей это недопустимо. Время передачи сообщения должно быть ограничено и в общем случае, с учетом количества узлов, скорости передачи данных и длины сообщений, может быть заранее рассчитано.
    2. Поддержка больших расстояний. Это существенное требование, ведь расстояние между объектами управления может порой достигать нескольких километров. Применяемый протокол должен быть ориентирован на использование в сетях большой протяженности.
    3. Защита от электромагнитных наводок. Длинные линии в особенности подвержены пагубному влиянию электромагнитных помех, излучаемых различными электрическими агрегатами. Сильные помехи в линии могут исказить передаваемые данные до неузнаваемости. Для защиты от таких помех применяют специальные экранированные кабели, а также оптоволокно, которое, в силу световой природы информационного сигнала, вообще нечувствительно к электромагнитным наводкам. Кроме этого, в промышленных сетях должны использоваться специальные методы цифрового кодирования данных, препятствующие их искажению в процессе передачи или, по крайней мере, позволяющие эффективно детектировать искаженные данные принимающим узлом.
    4. Упрочненная механическая конструкция кабелей и соединителей. Здесь тоже нет ничего удивительного, если представить, в каких условиях зачастую приходиться прокладывать коммуникационные линии. Кабели и соединители должны быть прочными, долговечными и приспособленными для использования в самых тяжелых окружающих условиях (в том числе агрессивных атмосферах).

    По типу физической среды полевые шины делятся на два типа:

    1. Полевые шины, построенные на базе оптоволоконного кабеля.
      Преимущества использования оптоволокна очевидны: возможность построения протяженных коммуникационных линий (протяженностью до 10 км и более); большая полоса пропускания; иммунитет к электромагнитным помехам; возможность прокладки во взрывоопасных зонах.
      Недостатки: относительно высокая стоимость кабеля; сложность физического подключения и соединения кабелей. Эти работы должны выполняться квалифицированными специалистами.
    2. Полевые шины, построенные на базе медного кабеля.
      Как правило, это двухпроводной кабель типа “витая пара” со специальной изоляцией и экранированием. Преимущества: удобоваримая цена; легкость прокладки и выполнения физических соединений. Недостатки: подвержен влиянию электромагнитных наводок; ограниченная протяженность кабельных линий; меньшая по сравнению с оптоволокном полоса пропускания.

    Итак, перейдем к рассмотрению методов обеспечения отказоустойчивости коммуникационных сетей, применяемых на полевом уровне. При проектировании и реализации этот аспект становится ключевым, так как в большой степени определяет характеристики надежности всей системы управления в целом.

    На рисунке 2 изображена базовая архитектура полевой шины – одиночная (нерезервированная). Шина связывает контроллер С1 и четыре узла ввода/вывода IO1-IO4. Очевидно, что такая архитектура наименее отказоустойчива, так как обрыв шины, в зависимости от его локализации, ведет к потере коммуникации с одним, несколькими или всеми узлами шины. В нашем случае в результате обрыва теряется связь с двумя узлами.

    4912
    Рис. 2. Нерезервированная шина.

    Здесь важное значение имеет термин “единичная точка отказа” (SPOF, single point of failure). Под этим понимается место в системе, отказ компонента или обрыв связи в котором приводит к нарушению работы всей системы. На рисунке 2 единичная точка отказа обозначена красным крестиком.

    На рисунке 3 показана конфигурация в виде дублированной полевой шины, связывающей резервированный контроллер с узлами ввода/вывода. Каждый узел ввода/вывода снабжен двумя интерфейсными модулями. Если не считать сами модули ввода/вывода, которые резервируются редко, в данной конфигурации единичной точки отказа нет.

    4913
    Рис. 3. Резервированная шина.

    Вообще, при построении отказоустойчивых АСУ ТП стараются, чтобы единичный отказ в любом компоненте (линии связи) не влиял на работу всей системы. В этом плане конфигурация в виде дублированной полевой шины является наиболее распространенным техническим решением.

    На рисунке 4 показана конфигурация в виде оптоволоконного кольца. Контроллер и узлы ввода/вывода подключены к кольцу с помощью резервированных медных сегментов. Для состыковки медных сегментов сети с оптоволоконными применяются специальные конверторы среды передачи данных “медь<->оптоволокно” (OLM, Optical Link Module). Для каждого из стандартных протоколов можно выбрать соответствующий OLM.

    4914
    Рис. 4. Одинарное оптоволоконное кольцо.

    Как и дублированная шина, оптоволоконное кольцо устойчиво к возникновению одного обрыва в любом его месте. Система такой обрыв вообще не заметит, и переключение на резервные интерфейсные и коммуникационные модули не произойдет. Более того, обрыв одного из двух медных сегментов, соединяющих узел с оптоволоконным кольцом, не приведет к потере связи с этим узлом. Однако второй обрыв кольца может привести к неработоспособности системы. В общем случае два обрыва кольца в диаметрально противоположных точках ведут к потере коммуникации с половиной подключенных узлов.

    На рисунке 5 изображена конфигурация с двойным оптическим кольцом. В случае если в результате образования двух точек обрыва первичное кольцо выходит из строя, система переключается на вторичное кольцо. Очевидно, что такая архитектура сети является наиболее отказоустойчивой. На рисунке 5 пошагово изображен процесс деградации сети. Обратите внимание, сколько отказов система может перенести до того, как выйдет из строя.

    4915
    Рис. 5. Резервированное оптоволоконное кольцо.

    [ http://kazanets.narod.ru/NT_PART1.htm]

    Тематики

    Синонимы

    EN

    Русско-английский словарь нормативно-технической терминологии > полевая шина

  • 8 программируемый логический контроллер

    1. speicherprogrammierbare Steuerung, f

     

    программируемый логический контроллер
    ПЛК
    -
    [Интент]

    контроллер
    Управляющее устройство, осуществляющее автоматическое управление посредством программной реализации алгоритмов управления.
    [Сборник рекомендуемых терминов. Выпуск 107. Теория управления.
     Академия наук СССР. Комитет научно-технической терминологии. 1984 г.]

    EN

    storage-programmable logic controller
    computer-aided control equipment or system whose logic sequence can be varied via a directly or remote-control connected programming device, for example a control panel, a host computer or a portable terminal
    [IEV ref 351-32-34]

    FR

    automate programmable à mémoire
    équipement ou système de commande assisté par ordinateur dont la séquence logique peut être modifiée directement ou par l'intermédiaire d'un dispositif de programmation relié à une télécommande, par exemple un panneau de commande, un ordinateur hôte ou un terminal de données portatif
    [IEV ref 351-32-34]

      См. также:
    - архитектура контроллера;
    - производительность контроллера;
    - время реакции контроллера;
    КЛАССИФИКАЦИЯ

      Основным показателем ПЛК является количество каналов ввода-вывода. По этому признаку ПЛК делятся на следующие группы: По расположению модулей ввода-вывода ПЛК бывают:
    • моноблочными - в которых устройство ввода-вывода не может быть удалено из контроллера или заменено на другое. Конструктивно контроллер представляет собой единое целое с устройствами ввода-вывода (например, одноплатный контроллер). Моноблочный контроллер может иметь, например, 16 каналов дискретного ввода и 8 каналов релейного вывода;
    • модульные - состоящие из общей корзины (шасси), в которой располагаются модуль центрального процессора и сменные модули ввода-вывода. Состав модулей выбирается пользователем в зависимости от решаемой задачи. Типовое количество слотов для сменных модулей - от 8 до 32;
    • распределенные (с удаленными модулями ввода-вывода) - в которых модули ввода-вывода выполнены в отдельных корпусах, соединяются с модулем контроллера по сети (обычно на основе интерфейса RS-485) и могут быть расположены на расстоянии до 1,2 км от процессорного модуля.
    Часто перечисленные конструктивные типы контроллеров комбинируются, например, моноблочный контроллер может иметь несколько съемных плат; моноблочный и модульный контроллеры могут быть дополнены удаленными модулями ввода-вывода, чтобы увеличить общее количество каналов.

    Многие контроллеры имеют набор сменных процессорных плат разной производительности. Это позволяет расширить круг потенциальных пользователей системы без изменения ее конструктива.

    По конструктивному исполнению и способу крепления контроллеры делятся на:
    По области применения контроллеры делятся на следующие типы:
    • универсальные общепромышленные;
    • для управления роботами;
    • для управления позиционированием и перемещением;
    • коммуникационные;
    • ПИД-контроллеры;
    • специализированные.

    По способу программирования контроллеры бывают:
    • программируемые с лицевой панели контроллера;
    • программируемые переносным программатором;
    • программируемые с помощью дисплея, мыши и клавиатуры;
    • программируемые с помощью персонального компьютера.

    Контроллеры могут программироваться на следующих языках:
    • на классических алгоритмических языках (C, С#, Visual Basic);
    • на языках МЭК 61131-3.

    Контроллеры могут содержать в своем составе модули ввода-вывода или не содержать их. Примерами контроллеров без модулей ввода-вывода являются коммуникационные контроллеры, которые выполняют функцию межсетевого шлюза, или контроллеры, получающие данные от контроллеров нижнего уровня иерархии АСУ ТП.   Контроллеры для систем автоматизации

    Слово "контроллер" произошло от английского "control" (управление), а не от русского "контроль" (учет, проверка). Контроллером в системах автоматизации называют устройство, выполняющее управление физическими процессами по записанному в него алгоритму, с использованием информации, получаемой от датчиков и выводимой в исполнительные устройства.

    Первые контроллеры появились на рубеже 60-х и 70-х годов в автомобильной промышленности, где использовались для автоматизации сборочных линий. В то время компьютеры стоили чрезвычайно дорого, поэтому контроллеры строились на жесткой логике (программировались аппаратно), что было гораздо дешевле. Однако перенастройка с одной технологической линии на другую требовала фактически изготовления нового контроллера. Поэтому появились контроллеры, алгоритм работы которых мог быть изменен несколько проще - с помощью схемы соединений реле. Такие контроллеры получили название программируемых логических контроллеров (ПЛК), и этот термин сохранился до настоящего времени. Везде ниже термины "контроллер" и "ПЛК" мы будем употреблять как синонимы.

    Немного позже появились ПЛК, которые можно было программировать на машинно-ориентированном языке, что было проще конструктивно, но требовало участия специально обученного программиста для внесения даже незначительных изменений в алгоритм управления. С этого момента началась борьба за упрощение процесса программирования ПЛК, которая привела сначала к созданию языков высокого уровня, затем - специализированных языков визуального программирования, похожих на язык релейной логики. В настоящее время этот процесс завершился созданием международного стандарта IEC (МЭК) 1131-3, который позже был переименован в МЭК 61131-3. Стандарт МЭК 61131-3 поддерживает пять языков технологического программирования, что исключает необходимость привлечения профессиональных программистов при построении систем с контроллерами, оставляя для них решение нестандартных задач.

    В связи с тем, что способ программирования является наиболее существенным классифицирующим признаком контроллера, понятие "ПЛК" все реже используется для обозначения управляющих контроллеров, которые не поддерживают технологические языки программирования.   Жесткие ограничения на стоимость и огромное разнообразие целей автоматизации привели к невозможности создания универсального ПЛК, как это случилось с офисными компьютерами. Область автоматизации выдвигает множество задач, в соответствии с которыми развивается и рынок, содержащий сотни непохожих друг на друга контроллеров, различающихся десятками параметров.

    Выбор оптимального для конкретной задачи контроллера основывается обычно на соответствии функциональных характеристик контроллера решаемой задаче при условии минимальной его стоимости. Учитываются также другие важные характеристики (температурный диапазон, надежность, бренд изготовителя, наличие разрешений Ростехнадзора, сертификатов и т. п.).

    Несмотря на огромное разнообразие контроллеров, в их развитии заметны следующие общие тенденции:
    • уменьшение габаритов;
    • расширение функциональных возможностей;
    • увеличение количества поддерживаемых интерфейсов и сетей;
    • использование идеологии "открытых систем";
    • использование языков программирования стандарта МЭК 61131-3;
    • снижение цены.
    Еще одной тенденцией является появление в контроллерах признаков компьютера (наличие мыши, клавиатуры, монитора, ОС Windows, возможности подключения жесткого диска), а в компьютерах - признаков контроллера (расширенный температурный диапазон, электронный диск, защита от пыли и влаги, крепление на DIN-рейку, наличие сторожевого таймера, увеличенное количество коммуникационных портов, использование ОС жесткого реального времени, функции самотестирования и диагностики, контроль целостности прикладной программы). Появились компьютеры в конструктивах для жестких условий эксплуатации. Аппаратные различия между компьютером и контроллером постепенно исчезают. Основными отличительными признаками контроллера остаются его назначение и наличие технологического языка программирования.

    [ http://bookasutp.ru/Chapter6_1.aspx]  
    Программируемый логический контроллер (ПЛК, PLC) – микропроцессорное устройство, предназначенное для управления технологическим процессом и другими сложными технологическими объектами.
    Принцип работы контроллера состоит в выполнение следующего цикла операций:

    1.    Сбор сигналов с датчиков;
    2.    Обработка сигналов согласно прикладному алгоритму управления;
    3.    Выдача управляющих воздействий на исполнительные устройства.

    В нормальном режиме работы контроллер непрерывно выполняет этот цикл с частотой от 50 раз в секунду. Время, затрачиваемое контроллером на выполнение полного цикла, часто называют временем (или периодом) сканирования; в большинстве современных ПЛК сканирование может настраиваться пользователем в диапазоне от 20 до 30000 миллисекунд. Для быстрых технологических процессов, где критична скорость реакции системы и требуется оперативное регулирование, время сканирования может составлять 20 мс, однако для большинства непрерывных процессов период 100 мс считается вполне приемлемым.

    Аппаратно контроллеры имеют модульную архитектуру и могут состоять из следующих компонентов:

    1.    Базовая панель ( Baseplate). Она служит для размещения на ней других модулей системы, устанавливаемых в специально отведенные позиции (слоты). Внутри базовой панели проходят две шины: одна - для подачи питания на электронные модули, другая – для пересылки данных и информационного обмена между модулями.

    2.    Модуль центрального вычислительного устройства ( СPU). Это мозг системы. Собственно в нем и происходит математическая обработка данных. Для связи с другими устройствами CPU часто оснащается сетевым интерфейсом, поддерживающим тот или иной коммуникационный стандарт.

    3.    Дополнительные коммуникационные модули. Необходимы для добавления сетевых интерфейсов, неподдерживаемых напрямую самим CPU. Коммуникационные модули существенно расширяют возможности ПЛК по сетевому взаимодействию. C их помощью к контроллеру подключают узлы распределенного ввода/вывода, интеллектуальные полевые приборы и станции операторского уровня.

    4.    Блок питания. Нужен для запитки системы от 220 V. Однако многие ПЛК не имеют стандартного блока питания и запитываются от внешнего.  
    4906
    Рис.1. Контроллер РСУ с коммуникациями Profibus и Ethernet.
     
    Иногда на базовую панель, помимо указанных выше, допускается устанавливать модули ввода/вывода полевых сигналов, которые образуют так называемый локальный ввод/вывод. Однако для большинства РСУ (DCS) характерно использование именно распределенного (удаленного) ввода/вывода.

    Отличительной особенностью контроллеров, применяемых в DCS, является возможность их резервирования. Резервирование нужно для повышения отказоустойчивости системы и заключается, как правило, в дублировании аппаратных модулей системы.
     
    4907
    Рис. 2. Резервированный контроллер с коммуникациями Profibus и Ethernet.
     
    Резервируемые модули работают параллельно и выполняют одни и те же функции. При этом один модуль находится в активном состоянии, а другой, являясь резервом, – в режиме “standby”. В случае отказа активного модуля, система автоматически переключается на резерв (это называется “горячий резерв”).

    Обратите внимание, контроллеры связаны шиной синхронизации, по которой они мониторят состояние друг друга. Это решение позволяет разнести резервированные модули на значительное расстояние друг от друга (например, расположить их в разных шкафах или даже аппаратных).

    Допустим, в данный момент активен левый контроллер, правый – находится в резерве. При этом, даже находясь в резерве, правый контроллер располагает всеми процессными данными и выполняет те же самые математические операции, что и левый. Контроллеры синхронизированы. Предположим, случается отказ левого контроллера, а именно модуля CPU. Управление автоматически передается резервному контроллеру, и теперь он становится главным. Здесь очень большое значение имеют время, которое система тратит на переключение на резерв (обычно меньше 0.5 с) и отсутствие возмущений (удара). Теперь система работает на резерве. Как только инженер заменит отказавший модуль CPU на исправный, система автоматически передаст ему управление и возвратится в исходное состояние.

    На рис. 3 изображен резервированный контроллер S7-400H производства Siemens. Данный контроллер входит в состав РСУ Simatic PCS7.
     
     
    4908
    Рис. 3. Резервированный контроллер S7-400H. Несколько другое техническое решение показано на примере резервированного контроллера FCP270 производства Foxboro (рис. 4). Данный контроллер входит в состав системы управления Foxboro IA Series.  
    4909
    Рис. 4. Резервированный контроллер FCP270.
    На базовой панели инсталлировано два процессорных модуля, работающих как резервированная пара, и коммуникационный модуль для сопряжения с оптическими сетями стандарта Ethernet. Взаимодействие между модулями происходит по внутренней шине (тоже резервированной), спрятанной непосредственно в базовую панель (ее не видно на рисунке).

    На рисунке ниже показан контроллер AC800M производства ABB (часть РСУ Extended Automation System 800xA).  
    4910
    Рис. 5. Контроллер AC800M.
     
    Это не резервированный вариант. Контроллер состоит из двух коммуникационных модулей, одного СPU и одного локального модуля ввода/вывода. Кроме этого, к контроллеру можно подключить до 64 внешних модулей ввода/вывода.

    При построении РСУ важно выбрать контроллер, удовлетворяющий всем техническим условиям и требованиям конкретного производства. Подбирая оптимальную конфигурацию, инженеры оперируют определенными техническими характеристиками промышленных контроллеров. Наиболее значимые перечислены ниже:

    1.    Возможность полного резервирования. Для задач, где отказоустойчивость критична (химия, нефтехимия, металлургия и т.д.), применение резервированных конфигураций вполне оправдано, тогда как для других менее ответственных производств резервирование зачастую оказывается избыточным решением.

    2.    Количество и тип поддерживаемых коммуникационных интерфейсов. Это определяет гибкость и масштабируемость системы управления в целом. Современные контроллеры способны поддерживать до 10 стандартов передачи данных одновременно, что во многом определяет их универсальность.

    3.    Быстродействие. Измеряется, как правило, в количестве выполняемых в секунду элементарных операций (до 200 млн.). Иногда быстродействие измеряется количеством обрабатываемых за секунду функциональных блоков (что такое функциональный блок – будет рассказано в следующей статье). Быстродействие зависит от типа центрального процессора (популярные производители - Intel, AMD, Motorola, Texas Instruments и т.д.)

    4.    Объем оперативной памяти. Во время работы контроллера в его оперативную память загружены запрограммированные пользователем алгоритмы автоматизированного управления, операционная система, библиотечные модули и т.д. Очевидно, чем больше оперативной памяти, тем сложнее и объемнее алгоритмы контроллер может выполнять, тем больше простора для творчества у программиста. Варьируется от 256 килобайт до 32 мегабайт.

    5.    Надежность. Наработка на отказ до 10-12 лет.

    6. Наличие специализированных средств разработки и поддержка различных языков программирования. Очевидно, что существование специализированный среды разработки прикладных программ – это стандарт для современного контроллера АСУ ТП. Для удобства программиста реализуется поддержка сразу нескольких языков как визуального, так и текстового (процедурного) программирования (FBD, SFC, IL, LAD, ST; об этом в следующей статье).

    7.    Возможность изменения алгоритмов управления на “лету” (online changes), т.е. без остановки работы контроллера. Для большинства контроллеров, применяемых в РСУ, поддержка online changes жизненно необходима, так как позволяет тонко настраивать систему или расширять ее функционал прямо на работающем производстве.

    8.    Возможность локального ввода/вывода. Как видно из рис. 4 контроллер Foxboro FCP270 рассчитан на работу только с удаленной подсистемой ввода/вывода, подключаемой к нему по оптическим каналам. Simatic S7-400 может спокойно работать как с локальными модулями ввода/вывода (свободные слоты на базовой панели есть), так и удаленными узлами.

    9.    Вес, габаритные размеры, вид монтажа (на DIN-рейку, на монтажную панель или в стойку 19”). Важно учитывать при проектировании и сборке системных шкафов.

    10.  Условия эксплуатации (температура, влажность, механические нагрузки). Большинство промышленных контроллеров могут работать в нечеловеческих условиях от 0 до 65 °С и при влажности до 95-98%.

    [ http://kazanets.narod.ru/PLC_PART1.htm]

    Тематики

    Синонимы

    EN

    DE

    • speicherprogrammierbare Steuerung, f

    FR

    Русско-немецкий словарь нормативно-технической терминологии > программируемый логический контроллер

  • 9 программируемый логический контроллер

    1. storage-programmable logic controller
    2. Programmable Logic Controller
    3. programmable controller
    4. PLC

     

    программируемый логический контроллер
    ПЛК
    -
    [Интент]

    контроллер
    Управляющее устройство, осуществляющее автоматическое управление посредством программной реализации алгоритмов управления.
    [Сборник рекомендуемых терминов. Выпуск 107. Теория управления.
     Академия наук СССР. Комитет научно-технической терминологии. 1984 г.]

    EN

    storage-programmable logic controller
    computer-aided control equipment or system whose logic sequence can be varied via a directly or remote-control connected programming device, for example a control panel, a host computer or a portable terminal
    [IEV ref 351-32-34]

    FR

    automate programmable à mémoire
    équipement ou système de commande assisté par ordinateur dont la séquence logique peut être modifiée directement ou par l'intermédiaire d'un dispositif de programmation relié à une télécommande, par exemple un panneau de commande, un ordinateur hôte ou un terminal de données portatif
    [IEV ref 351-32-34]

      См. также:
    - архитектура контроллера;
    - производительность контроллера;
    - время реакции контроллера;
    КЛАССИФИКАЦИЯ

      Основным показателем ПЛК является количество каналов ввода-вывода. По этому признаку ПЛК делятся на следующие группы: По расположению модулей ввода-вывода ПЛК бывают:
    • моноблочными - в которых устройство ввода-вывода не может быть удалено из контроллера или заменено на другое. Конструктивно контроллер представляет собой единое целое с устройствами ввода-вывода (например, одноплатный контроллер). Моноблочный контроллер может иметь, например, 16 каналов дискретного ввода и 8 каналов релейного вывода;
    • модульные - состоящие из общей корзины (шасси), в которой располагаются модуль центрального процессора и сменные модули ввода-вывода. Состав модулей выбирается пользователем в зависимости от решаемой задачи. Типовое количество слотов для сменных модулей - от 8 до 32;
    • распределенные (с удаленными модулями ввода-вывода) - в которых модули ввода-вывода выполнены в отдельных корпусах, соединяются с модулем контроллера по сети (обычно на основе интерфейса RS-485) и могут быть расположены на расстоянии до 1,2 км от процессорного модуля.
    Часто перечисленные конструктивные типы контроллеров комбинируются, например, моноблочный контроллер может иметь несколько съемных плат; моноблочный и модульный контроллеры могут быть дополнены удаленными модулями ввода-вывода, чтобы увеличить общее количество каналов.

    Многие контроллеры имеют набор сменных процессорных плат разной производительности. Это позволяет расширить круг потенциальных пользователей системы без изменения ее конструктива.

    По конструктивному исполнению и способу крепления контроллеры делятся на:
    По области применения контроллеры делятся на следующие типы:
    • универсальные общепромышленные;
    • для управления роботами;
    • для управления позиционированием и перемещением;
    • коммуникационные;
    • ПИД-контроллеры;
    • специализированные.

    По способу программирования контроллеры бывают:
    • программируемые с лицевой панели контроллера;
    • программируемые переносным программатором;
    • программируемые с помощью дисплея, мыши и клавиатуры;
    • программируемые с помощью персонального компьютера.

    Контроллеры могут программироваться на следующих языках:
    • на классических алгоритмических языках (C, С#, Visual Basic);
    • на языках МЭК 61131-3.

    Контроллеры могут содержать в своем составе модули ввода-вывода или не содержать их. Примерами контроллеров без модулей ввода-вывода являются коммуникационные контроллеры, которые выполняют функцию межсетевого шлюза, или контроллеры, получающие данные от контроллеров нижнего уровня иерархии АСУ ТП.   Контроллеры для систем автоматизации

    Слово "контроллер" произошло от английского "control" (управление), а не от русского "контроль" (учет, проверка). Контроллером в системах автоматизации называют устройство, выполняющее управление физическими процессами по записанному в него алгоритму, с использованием информации, получаемой от датчиков и выводимой в исполнительные устройства.

    Первые контроллеры появились на рубеже 60-х и 70-х годов в автомобильной промышленности, где использовались для автоматизации сборочных линий. В то время компьютеры стоили чрезвычайно дорого, поэтому контроллеры строились на жесткой логике (программировались аппаратно), что было гораздо дешевле. Однако перенастройка с одной технологической линии на другую требовала фактически изготовления нового контроллера. Поэтому появились контроллеры, алгоритм работы которых мог быть изменен несколько проще - с помощью схемы соединений реле. Такие контроллеры получили название программируемых логических контроллеров (ПЛК), и этот термин сохранился до настоящего времени. Везде ниже термины "контроллер" и "ПЛК" мы будем употреблять как синонимы.

    Немного позже появились ПЛК, которые можно было программировать на машинно-ориентированном языке, что было проще конструктивно, но требовало участия специально обученного программиста для внесения даже незначительных изменений в алгоритм управления. С этого момента началась борьба за упрощение процесса программирования ПЛК, которая привела сначала к созданию языков высокого уровня, затем - специализированных языков визуального программирования, похожих на язык релейной логики. В настоящее время этот процесс завершился созданием международного стандарта IEC (МЭК) 1131-3, который позже был переименован в МЭК 61131-3. Стандарт МЭК 61131-3 поддерживает пять языков технологического программирования, что исключает необходимость привлечения профессиональных программистов при построении систем с контроллерами, оставляя для них решение нестандартных задач.

    В связи с тем, что способ программирования является наиболее существенным классифицирующим признаком контроллера, понятие "ПЛК" все реже используется для обозначения управляющих контроллеров, которые не поддерживают технологические языки программирования.   Жесткие ограничения на стоимость и огромное разнообразие целей автоматизации привели к невозможности создания универсального ПЛК, как это случилось с офисными компьютерами. Область автоматизации выдвигает множество задач, в соответствии с которыми развивается и рынок, содержащий сотни непохожих друг на друга контроллеров, различающихся десятками параметров.

    Выбор оптимального для конкретной задачи контроллера основывается обычно на соответствии функциональных характеристик контроллера решаемой задаче при условии минимальной его стоимости. Учитываются также другие важные характеристики (температурный диапазон, надежность, бренд изготовителя, наличие разрешений Ростехнадзора, сертификатов и т. п.).

    Несмотря на огромное разнообразие контроллеров, в их развитии заметны следующие общие тенденции:
    • уменьшение габаритов;
    • расширение функциональных возможностей;
    • увеличение количества поддерживаемых интерфейсов и сетей;
    • использование идеологии "открытых систем";
    • использование языков программирования стандарта МЭК 61131-3;
    • снижение цены.
    Еще одной тенденцией является появление в контроллерах признаков компьютера (наличие мыши, клавиатуры, монитора, ОС Windows, возможности подключения жесткого диска), а в компьютерах - признаков контроллера (расширенный температурный диапазон, электронный диск, защита от пыли и влаги, крепление на DIN-рейку, наличие сторожевого таймера, увеличенное количество коммуникационных портов, использование ОС жесткого реального времени, функции самотестирования и диагностики, контроль целостности прикладной программы). Появились компьютеры в конструктивах для жестких условий эксплуатации. Аппаратные различия между компьютером и контроллером постепенно исчезают. Основными отличительными признаками контроллера остаются его назначение и наличие технологического языка программирования.

    [ http://bookasutp.ru/Chapter6_1.aspx]  
    Программируемый логический контроллер (ПЛК, PLC) – микропроцессорное устройство, предназначенное для управления технологическим процессом и другими сложными технологическими объектами.
    Принцип работы контроллера состоит в выполнение следующего цикла операций:

    1.    Сбор сигналов с датчиков;
    2.    Обработка сигналов согласно прикладному алгоритму управления;
    3.    Выдача управляющих воздействий на исполнительные устройства.

    В нормальном режиме работы контроллер непрерывно выполняет этот цикл с частотой от 50 раз в секунду. Время, затрачиваемое контроллером на выполнение полного цикла, часто называют временем (или периодом) сканирования; в большинстве современных ПЛК сканирование может настраиваться пользователем в диапазоне от 20 до 30000 миллисекунд. Для быстрых технологических процессов, где критична скорость реакции системы и требуется оперативное регулирование, время сканирования может составлять 20 мс, однако для большинства непрерывных процессов период 100 мс считается вполне приемлемым.

    Аппаратно контроллеры имеют модульную архитектуру и могут состоять из следующих компонентов:

    1.    Базовая панель ( Baseplate). Она служит для размещения на ней других модулей системы, устанавливаемых в специально отведенные позиции (слоты). Внутри базовой панели проходят две шины: одна - для подачи питания на электронные модули, другая – для пересылки данных и информационного обмена между модулями.

    2.    Модуль центрального вычислительного устройства ( СPU). Это мозг системы. Собственно в нем и происходит математическая обработка данных. Для связи с другими устройствами CPU часто оснащается сетевым интерфейсом, поддерживающим тот или иной коммуникационный стандарт.

    3.    Дополнительные коммуникационные модули. Необходимы для добавления сетевых интерфейсов, неподдерживаемых напрямую самим CPU. Коммуникационные модули существенно расширяют возможности ПЛК по сетевому взаимодействию. C их помощью к контроллеру подключают узлы распределенного ввода/вывода, интеллектуальные полевые приборы и станции операторского уровня.

    4.    Блок питания. Нужен для запитки системы от 220 V. Однако многие ПЛК не имеют стандартного блока питания и запитываются от внешнего.  
    4906
    Рис.1. Контроллер РСУ с коммуникациями Profibus и Ethernet.
     
    Иногда на базовую панель, помимо указанных выше, допускается устанавливать модули ввода/вывода полевых сигналов, которые образуют так называемый локальный ввод/вывод. Однако для большинства РСУ (DCS) характерно использование именно распределенного (удаленного) ввода/вывода.

    Отличительной особенностью контроллеров, применяемых в DCS, является возможность их резервирования. Резервирование нужно для повышения отказоустойчивости системы и заключается, как правило, в дублировании аппаратных модулей системы.
     
    4907
    Рис. 2. Резервированный контроллер с коммуникациями Profibus и Ethernet.
     
    Резервируемые модули работают параллельно и выполняют одни и те же функции. При этом один модуль находится в активном состоянии, а другой, являясь резервом, – в режиме “standby”. В случае отказа активного модуля, система автоматически переключается на резерв (это называется “горячий резерв”).

    Обратите внимание, контроллеры связаны шиной синхронизации, по которой они мониторят состояние друг друга. Это решение позволяет разнести резервированные модули на значительное расстояние друг от друга (например, расположить их в разных шкафах или даже аппаратных).

    Допустим, в данный момент активен левый контроллер, правый – находится в резерве. При этом, даже находясь в резерве, правый контроллер располагает всеми процессными данными и выполняет те же самые математические операции, что и левый. Контроллеры синхронизированы. Предположим, случается отказ левого контроллера, а именно модуля CPU. Управление автоматически передается резервному контроллеру, и теперь он становится главным. Здесь очень большое значение имеют время, которое система тратит на переключение на резерв (обычно меньше 0.5 с) и отсутствие возмущений (удара). Теперь система работает на резерве. Как только инженер заменит отказавший модуль CPU на исправный, система автоматически передаст ему управление и возвратится в исходное состояние.

    На рис. 3 изображен резервированный контроллер S7-400H производства Siemens. Данный контроллер входит в состав РСУ Simatic PCS7.
     
     
    4908
    Рис. 3. Резервированный контроллер S7-400H. Несколько другое техническое решение показано на примере резервированного контроллера FCP270 производства Foxboro (рис. 4). Данный контроллер входит в состав системы управления Foxboro IA Series.  
    4909
    Рис. 4. Резервированный контроллер FCP270.
    На базовой панели инсталлировано два процессорных модуля, работающих как резервированная пара, и коммуникационный модуль для сопряжения с оптическими сетями стандарта Ethernet. Взаимодействие между модулями происходит по внутренней шине (тоже резервированной), спрятанной непосредственно в базовую панель (ее не видно на рисунке).

    На рисунке ниже показан контроллер AC800M производства ABB (часть РСУ Extended Automation System 800xA).  
    4910
    Рис. 5. Контроллер AC800M.
     
    Это не резервированный вариант. Контроллер состоит из двух коммуникационных модулей, одного СPU и одного локального модуля ввода/вывода. Кроме этого, к контроллеру можно подключить до 64 внешних модулей ввода/вывода.

    При построении РСУ важно выбрать контроллер, удовлетворяющий всем техническим условиям и требованиям конкретного производства. Подбирая оптимальную конфигурацию, инженеры оперируют определенными техническими характеристиками промышленных контроллеров. Наиболее значимые перечислены ниже:

    1.    Возможность полного резервирования. Для задач, где отказоустойчивость критична (химия, нефтехимия, металлургия и т.д.), применение резервированных конфигураций вполне оправдано, тогда как для других менее ответственных производств резервирование зачастую оказывается избыточным решением.

    2.    Количество и тип поддерживаемых коммуникационных интерфейсов. Это определяет гибкость и масштабируемость системы управления в целом. Современные контроллеры способны поддерживать до 10 стандартов передачи данных одновременно, что во многом определяет их универсальность.

    3.    Быстродействие. Измеряется, как правило, в количестве выполняемых в секунду элементарных операций (до 200 млн.). Иногда быстродействие измеряется количеством обрабатываемых за секунду функциональных блоков (что такое функциональный блок – будет рассказано в следующей статье). Быстродействие зависит от типа центрального процессора (популярные производители - Intel, AMD, Motorola, Texas Instruments и т.д.)

    4.    Объем оперативной памяти. Во время работы контроллера в его оперативную память загружены запрограммированные пользователем алгоритмы автоматизированного управления, операционная система, библиотечные модули и т.д. Очевидно, чем больше оперативной памяти, тем сложнее и объемнее алгоритмы контроллер может выполнять, тем больше простора для творчества у программиста. Варьируется от 256 килобайт до 32 мегабайт.

    5.    Надежность. Наработка на отказ до 10-12 лет.

    6. Наличие специализированных средств разработки и поддержка различных языков программирования. Очевидно, что существование специализированный среды разработки прикладных программ – это стандарт для современного контроллера АСУ ТП. Для удобства программиста реализуется поддержка сразу нескольких языков как визуального, так и текстового (процедурного) программирования (FBD, SFC, IL, LAD, ST; об этом в следующей статье).

    7.    Возможность изменения алгоритмов управления на “лету” (online changes), т.е. без остановки работы контроллера. Для большинства контроллеров, применяемых в РСУ, поддержка online changes жизненно необходима, так как позволяет тонко настраивать систему или расширять ее функционал прямо на работающем производстве.

    8.    Возможность локального ввода/вывода. Как видно из рис. 4 контроллер Foxboro FCP270 рассчитан на работу только с удаленной подсистемой ввода/вывода, подключаемой к нему по оптическим каналам. Simatic S7-400 может спокойно работать как с локальными модулями ввода/вывода (свободные слоты на базовой панели есть), так и удаленными узлами.

    9.    Вес, габаритные размеры, вид монтажа (на DIN-рейку, на монтажную панель или в стойку 19”). Важно учитывать при проектировании и сборке системных шкафов.

    10.  Условия эксплуатации (температура, влажность, механические нагрузки). Большинство промышленных контроллеров могут работать в нечеловеческих условиях от 0 до 65 °С и при влажности до 95-98%.

    [ http://kazanets.narod.ru/PLC_PART1.htm]

    Тематики

    Синонимы

    EN

    DE

    • speicherprogrammierbare Steuerung, f

    FR

    Русско-английский словарь нормативно-технической терминологии > программируемый логический контроллер

  • 10 программируемый логический контроллер

    1. automate programmable à mémoire

     

    программируемый логический контроллер
    ПЛК
    -
    [Интент]

    контроллер
    Управляющее устройство, осуществляющее автоматическое управление посредством программной реализации алгоритмов управления.
    [Сборник рекомендуемых терминов. Выпуск 107. Теория управления.
     Академия наук СССР. Комитет научно-технической терминологии. 1984 г.]

    EN

    storage-programmable logic controller
    computer-aided control equipment or system whose logic sequence can be varied via a directly or remote-control connected programming device, for example a control panel, a host computer or a portable terminal
    [IEV ref 351-32-34]

    FR

    automate programmable à mémoire
    équipement ou système de commande assisté par ordinateur dont la séquence logique peut être modifiée directement ou par l'intermédiaire d'un dispositif de programmation relié à une télécommande, par exemple un panneau de commande, un ordinateur hôte ou un terminal de données portatif
    [IEV ref 351-32-34]

      См. также:
    - архитектура контроллера;
    - производительность контроллера;
    - время реакции контроллера;
    КЛАССИФИКАЦИЯ

      Основным показателем ПЛК является количество каналов ввода-вывода. По этому признаку ПЛК делятся на следующие группы: По расположению модулей ввода-вывода ПЛК бывают:
    • моноблочными - в которых устройство ввода-вывода не может быть удалено из контроллера или заменено на другое. Конструктивно контроллер представляет собой единое целое с устройствами ввода-вывода (например, одноплатный контроллер). Моноблочный контроллер может иметь, например, 16 каналов дискретного ввода и 8 каналов релейного вывода;
    • модульные - состоящие из общей корзины (шасси), в которой располагаются модуль центрального процессора и сменные модули ввода-вывода. Состав модулей выбирается пользователем в зависимости от решаемой задачи. Типовое количество слотов для сменных модулей - от 8 до 32;
    • распределенные (с удаленными модулями ввода-вывода) - в которых модули ввода-вывода выполнены в отдельных корпусах, соединяются с модулем контроллера по сети (обычно на основе интерфейса RS-485) и могут быть расположены на расстоянии до 1,2 км от процессорного модуля.
    Часто перечисленные конструктивные типы контроллеров комбинируются, например, моноблочный контроллер может иметь несколько съемных плат; моноблочный и модульный контроллеры могут быть дополнены удаленными модулями ввода-вывода, чтобы увеличить общее количество каналов.

    Многие контроллеры имеют набор сменных процессорных плат разной производительности. Это позволяет расширить круг потенциальных пользователей системы без изменения ее конструктива.

    По конструктивному исполнению и способу крепления контроллеры делятся на:
    По области применения контроллеры делятся на следующие типы:
    • универсальные общепромышленные;
    • для управления роботами;
    • для управления позиционированием и перемещением;
    • коммуникационные;
    • ПИД-контроллеры;
    • специализированные.

    По способу программирования контроллеры бывают:
    • программируемые с лицевой панели контроллера;
    • программируемые переносным программатором;
    • программируемые с помощью дисплея, мыши и клавиатуры;
    • программируемые с помощью персонального компьютера.

    Контроллеры могут программироваться на следующих языках:
    • на классических алгоритмических языках (C, С#, Visual Basic);
    • на языках МЭК 61131-3.

    Контроллеры могут содержать в своем составе модули ввода-вывода или не содержать их. Примерами контроллеров без модулей ввода-вывода являются коммуникационные контроллеры, которые выполняют функцию межсетевого шлюза, или контроллеры, получающие данные от контроллеров нижнего уровня иерархии АСУ ТП.   Контроллеры для систем автоматизации

    Слово "контроллер" произошло от английского "control" (управление), а не от русского "контроль" (учет, проверка). Контроллером в системах автоматизации называют устройство, выполняющее управление физическими процессами по записанному в него алгоритму, с использованием информации, получаемой от датчиков и выводимой в исполнительные устройства.

    Первые контроллеры появились на рубеже 60-х и 70-х годов в автомобильной промышленности, где использовались для автоматизации сборочных линий. В то время компьютеры стоили чрезвычайно дорого, поэтому контроллеры строились на жесткой логике (программировались аппаратно), что было гораздо дешевле. Однако перенастройка с одной технологической линии на другую требовала фактически изготовления нового контроллера. Поэтому появились контроллеры, алгоритм работы которых мог быть изменен несколько проще - с помощью схемы соединений реле. Такие контроллеры получили название программируемых логических контроллеров (ПЛК), и этот термин сохранился до настоящего времени. Везде ниже термины "контроллер" и "ПЛК" мы будем употреблять как синонимы.

    Немного позже появились ПЛК, которые можно было программировать на машинно-ориентированном языке, что было проще конструктивно, но требовало участия специально обученного программиста для внесения даже незначительных изменений в алгоритм управления. С этого момента началась борьба за упрощение процесса программирования ПЛК, которая привела сначала к созданию языков высокого уровня, затем - специализированных языков визуального программирования, похожих на язык релейной логики. В настоящее время этот процесс завершился созданием международного стандарта IEC (МЭК) 1131-3, который позже был переименован в МЭК 61131-3. Стандарт МЭК 61131-3 поддерживает пять языков технологического программирования, что исключает необходимость привлечения профессиональных программистов при построении систем с контроллерами, оставляя для них решение нестандартных задач.

    В связи с тем, что способ программирования является наиболее существенным классифицирующим признаком контроллера, понятие "ПЛК" все реже используется для обозначения управляющих контроллеров, которые не поддерживают технологические языки программирования.   Жесткие ограничения на стоимость и огромное разнообразие целей автоматизации привели к невозможности создания универсального ПЛК, как это случилось с офисными компьютерами. Область автоматизации выдвигает множество задач, в соответствии с которыми развивается и рынок, содержащий сотни непохожих друг на друга контроллеров, различающихся десятками параметров.

    Выбор оптимального для конкретной задачи контроллера основывается обычно на соответствии функциональных характеристик контроллера решаемой задаче при условии минимальной его стоимости. Учитываются также другие важные характеристики (температурный диапазон, надежность, бренд изготовителя, наличие разрешений Ростехнадзора, сертификатов и т. п.).

    Несмотря на огромное разнообразие контроллеров, в их развитии заметны следующие общие тенденции:
    • уменьшение габаритов;
    • расширение функциональных возможностей;
    • увеличение количества поддерживаемых интерфейсов и сетей;
    • использование идеологии "открытых систем";
    • использование языков программирования стандарта МЭК 61131-3;
    • снижение цены.
    Еще одной тенденцией является появление в контроллерах признаков компьютера (наличие мыши, клавиатуры, монитора, ОС Windows, возможности подключения жесткого диска), а в компьютерах - признаков контроллера (расширенный температурный диапазон, электронный диск, защита от пыли и влаги, крепление на DIN-рейку, наличие сторожевого таймера, увеличенное количество коммуникационных портов, использование ОС жесткого реального времени, функции самотестирования и диагностики, контроль целостности прикладной программы). Появились компьютеры в конструктивах для жестких условий эксплуатации. Аппаратные различия между компьютером и контроллером постепенно исчезают. Основными отличительными признаками контроллера остаются его назначение и наличие технологического языка программирования.

    [ http://bookasutp.ru/Chapter6_1.aspx]  
    Программируемый логический контроллер (ПЛК, PLC) – микропроцессорное устройство, предназначенное для управления технологическим процессом и другими сложными технологическими объектами.
    Принцип работы контроллера состоит в выполнение следующего цикла операций:

    1.    Сбор сигналов с датчиков;
    2.    Обработка сигналов согласно прикладному алгоритму управления;
    3.    Выдача управляющих воздействий на исполнительные устройства.

    В нормальном режиме работы контроллер непрерывно выполняет этот цикл с частотой от 50 раз в секунду. Время, затрачиваемое контроллером на выполнение полного цикла, часто называют временем (или периодом) сканирования; в большинстве современных ПЛК сканирование может настраиваться пользователем в диапазоне от 20 до 30000 миллисекунд. Для быстрых технологических процессов, где критична скорость реакции системы и требуется оперативное регулирование, время сканирования может составлять 20 мс, однако для большинства непрерывных процессов период 100 мс считается вполне приемлемым.

    Аппаратно контроллеры имеют модульную архитектуру и могут состоять из следующих компонентов:

    1.    Базовая панель ( Baseplate). Она служит для размещения на ней других модулей системы, устанавливаемых в специально отведенные позиции (слоты). Внутри базовой панели проходят две шины: одна - для подачи питания на электронные модули, другая – для пересылки данных и информационного обмена между модулями.

    2.    Модуль центрального вычислительного устройства ( СPU). Это мозг системы. Собственно в нем и происходит математическая обработка данных. Для связи с другими устройствами CPU часто оснащается сетевым интерфейсом, поддерживающим тот или иной коммуникационный стандарт.

    3.    Дополнительные коммуникационные модули. Необходимы для добавления сетевых интерфейсов, неподдерживаемых напрямую самим CPU. Коммуникационные модули существенно расширяют возможности ПЛК по сетевому взаимодействию. C их помощью к контроллеру подключают узлы распределенного ввода/вывода, интеллектуальные полевые приборы и станции операторского уровня.

    4.    Блок питания. Нужен для запитки системы от 220 V. Однако многие ПЛК не имеют стандартного блока питания и запитываются от внешнего.  
    4906
    Рис.1. Контроллер РСУ с коммуникациями Profibus и Ethernet.
     
    Иногда на базовую панель, помимо указанных выше, допускается устанавливать модули ввода/вывода полевых сигналов, которые образуют так называемый локальный ввод/вывод. Однако для большинства РСУ (DCS) характерно использование именно распределенного (удаленного) ввода/вывода.

    Отличительной особенностью контроллеров, применяемых в DCS, является возможность их резервирования. Резервирование нужно для повышения отказоустойчивости системы и заключается, как правило, в дублировании аппаратных модулей системы.
     
    4907
    Рис. 2. Резервированный контроллер с коммуникациями Profibus и Ethernet.
     
    Резервируемые модули работают параллельно и выполняют одни и те же функции. При этом один модуль находится в активном состоянии, а другой, являясь резервом, – в режиме “standby”. В случае отказа активного модуля, система автоматически переключается на резерв (это называется “горячий резерв”).

    Обратите внимание, контроллеры связаны шиной синхронизации, по которой они мониторят состояние друг друга. Это решение позволяет разнести резервированные модули на значительное расстояние друг от друга (например, расположить их в разных шкафах или даже аппаратных).

    Допустим, в данный момент активен левый контроллер, правый – находится в резерве. При этом, даже находясь в резерве, правый контроллер располагает всеми процессными данными и выполняет те же самые математические операции, что и левый. Контроллеры синхронизированы. Предположим, случается отказ левого контроллера, а именно модуля CPU. Управление автоматически передается резервному контроллеру, и теперь он становится главным. Здесь очень большое значение имеют время, которое система тратит на переключение на резерв (обычно меньше 0.5 с) и отсутствие возмущений (удара). Теперь система работает на резерве. Как только инженер заменит отказавший модуль CPU на исправный, система автоматически передаст ему управление и возвратится в исходное состояние.

    На рис. 3 изображен резервированный контроллер S7-400H производства Siemens. Данный контроллер входит в состав РСУ Simatic PCS7.
     
     
    4908
    Рис. 3. Резервированный контроллер S7-400H. Несколько другое техническое решение показано на примере резервированного контроллера FCP270 производства Foxboro (рис. 4). Данный контроллер входит в состав системы управления Foxboro IA Series.  
    4909
    Рис. 4. Резервированный контроллер FCP270.
    На базовой панели инсталлировано два процессорных модуля, работающих как резервированная пара, и коммуникационный модуль для сопряжения с оптическими сетями стандарта Ethernet. Взаимодействие между модулями происходит по внутренней шине (тоже резервированной), спрятанной непосредственно в базовую панель (ее не видно на рисунке).

    На рисунке ниже показан контроллер AC800M производства ABB (часть РСУ Extended Automation System 800xA).  
    4910
    Рис. 5. Контроллер AC800M.
     
    Это не резервированный вариант. Контроллер состоит из двух коммуникационных модулей, одного СPU и одного локального модуля ввода/вывода. Кроме этого, к контроллеру можно подключить до 64 внешних модулей ввода/вывода.

    При построении РСУ важно выбрать контроллер, удовлетворяющий всем техническим условиям и требованиям конкретного производства. Подбирая оптимальную конфигурацию, инженеры оперируют определенными техническими характеристиками промышленных контроллеров. Наиболее значимые перечислены ниже:

    1.    Возможность полного резервирования. Для задач, где отказоустойчивость критична (химия, нефтехимия, металлургия и т.д.), применение резервированных конфигураций вполне оправдано, тогда как для других менее ответственных производств резервирование зачастую оказывается избыточным решением.

    2.    Количество и тип поддерживаемых коммуникационных интерфейсов. Это определяет гибкость и масштабируемость системы управления в целом. Современные контроллеры способны поддерживать до 10 стандартов передачи данных одновременно, что во многом определяет их универсальность.

    3.    Быстродействие. Измеряется, как правило, в количестве выполняемых в секунду элементарных операций (до 200 млн.). Иногда быстродействие измеряется количеством обрабатываемых за секунду функциональных блоков (что такое функциональный блок – будет рассказано в следующей статье). Быстродействие зависит от типа центрального процессора (популярные производители - Intel, AMD, Motorola, Texas Instruments и т.д.)

    4.    Объем оперативной памяти. Во время работы контроллера в его оперативную память загружены запрограммированные пользователем алгоритмы автоматизированного управления, операционная система, библиотечные модули и т.д. Очевидно, чем больше оперативной памяти, тем сложнее и объемнее алгоритмы контроллер может выполнять, тем больше простора для творчества у программиста. Варьируется от 256 килобайт до 32 мегабайт.

    5.    Надежность. Наработка на отказ до 10-12 лет.

    6. Наличие специализированных средств разработки и поддержка различных языков программирования. Очевидно, что существование специализированный среды разработки прикладных программ – это стандарт для современного контроллера АСУ ТП. Для удобства программиста реализуется поддержка сразу нескольких языков как визуального, так и текстового (процедурного) программирования (FBD, SFC, IL, LAD, ST; об этом в следующей статье).

    7.    Возможность изменения алгоритмов управления на “лету” (online changes), т.е. без остановки работы контроллера. Для большинства контроллеров, применяемых в РСУ, поддержка online changes жизненно необходима, так как позволяет тонко настраивать систему или расширять ее функционал прямо на работающем производстве.

    8.    Возможность локального ввода/вывода. Как видно из рис. 4 контроллер Foxboro FCP270 рассчитан на работу только с удаленной подсистемой ввода/вывода, подключаемой к нему по оптическим каналам. Simatic S7-400 может спокойно работать как с локальными модулями ввода/вывода (свободные слоты на базовой панели есть), так и удаленными узлами.

    9.    Вес, габаритные размеры, вид монтажа (на DIN-рейку, на монтажную панель или в стойку 19”). Важно учитывать при проектировании и сборке системных шкафов.

    10.  Условия эксплуатации (температура, влажность, механические нагрузки). Большинство промышленных контроллеров могут работать в нечеловеческих условиях от 0 до 65 °С и при влажности до 95-98%.

    [ http://kazanets.narod.ru/PLC_PART1.htm]

    Тематики

    Синонимы

    EN

    DE

    • speicherprogrammierbare Steuerung, f

    FR

    Русско-французский словарь нормативно-технической терминологии > программируемый логический контроллер

  • 11 растровое изображение

    1. halftone image
    2. BMP
    3. bitmap
    4. bit image

     

    растровое изображение
    Для воспроизведения полутонового оригинала на печатной машине изображение разбивается на множество точек разного размера и цвета (растр). Более мелкие точки отображают светлые участки, более крупные — темные участки. Черно-белые изображения воспроизводятся с помощью только черных точек, а цветные — с помощью голубых, пурпурных, желтых и черных точек (CMYK).
    [ http://www.morepc.ru/dict/]

    растровое изображение
    Графическое изображение на экране дисплея или на печатающем устройстве, представляемое в виде массива битов (нулей и единиц).
    [ http://www.morepc.ru/dict/]

    растровое изображение
    Это файл данных, представляющий собой прямоугольную расчетную сетку пикселей. Она определяет место и цвет каждого пикселя (или бита) на экране. Этот тип изображения также называется растровой графикой. Форматы GIF и JPEG являются примерами типов файлов, содержащих растровое изображение.
    Поскольку в этом типе изображения используется метод фиксированного растра, нельзя изменить масштаб без потери четкости. В противоположность растровому, в векторном графическом изображении для воспроизведения используются геометрические фигуры, что позволяет быстро изменять масштаб.
    [ http://www.alltso.ru/publ/glossarij_setevoe_videonabljudenie_terminy/1-1-0-34]

    битовое отображение

    Попиксельное описание изображения. Каждый пиксел рассматривается как отдельный элемент.
    [ http://www.vidimost.com/glossary.html]

    Тематики

    Синонимы

    EN

    Русско-английский словарь нормативно-технической терминологии > растровое изображение

См. также в других словарях:

  • Множество (тип данных) — У этого термина существуют и другие значения, см. Множество (значения). Множество тип и структура данных в информатике, является реализацией математического объекта множество. Данные типа множество позволяют хранить ограниченное число значений… …   Википедия

  • Тип данных — (встречается также термин вид данных)  фундаментальное понятие теории программирования. Тип данных определяет множество значений, набор операций, которые можно применять к таким значениям и, возможно, способ реализации хранения значений и… …   Википедия

  • тип данных — Множество величин, объединенных определенной совокупностью допустимых операций. [ИСО/МЭК 2382 15] [ГОСТ Р 52292 2004] тип данных тип Множество значений вместе с множеством допустимых над ними операций [ГОСТ 28397 89] тип данных В программировании …   Справочник технического переводчика

  • тип данных — 2.35 тип данных (data type): Поименованная совокупность данных с общими статическими и динамическими свойствами, устанавливаемыми формализованными требованиями к данным рассматриваемого типа. Источник: ГОСТ Р ИСО/МЭК ТО 10032 2007: Эталонная… …   Словарь-справочник терминов нормативно-технической документации

  • тип данных элемента данных — 3.1.6 тип данных элемента данных (Data Element Datatype; DE datatype): Спецификация множества различных значений для элемента данных, характеризуемая свойствами этих значений и возможными операциями над этими значениями. Примечание 1 Множество… …   Словарь-справочник терминов нормативно-технической документации

  • Целое (тип данных) — Целое, целочисленный тип данных (англ. Integer), в информатике  один из простейших и самых распространённых типов данных в языках программирования. Служит для представления целых чисел. Множество чисел этого типа представляет собой… …   Википедия

  • Комплексный тип данных — Некоторые языки программирования предоставляют специальный тип данных для комплексных чисел. Наличие встроенного типа упрощает хранение комплексных величин и вычисления над ними. Содержание 1 Арифметика над комплексными 2 Поддержка в языках …   Википедия

  • Алгебраический тип данных — в теории программирования любой тип, значения которого являются значениями некоторых иных типов, «обёрнутыми» конструкторами алгебраического типа. Другими словами, алгебраический тип данных имеет набор конструкторов типа, каждый из которых… …   Википедия

  • Абстрактный тип данных — Для улучшения этой статьи по информационным технологиям желательно?: Найти и оформить в виде сносок ссылки на авторитетные источники, подтверждающие написанное. Проставив сноски, внести более точные у …   Википедия

  • Указатель (тип данных) — У этого термина существуют и другие значения, см. Указатель. Диаграмма указателей Указатель (пойнтер, англ. pointer)  переменная, диапазон значений которой состоит из адресов ячеек памяти и специального значения  нулевого адреса.… …   Википедия

  • Обобщённый алгебраический тип данных — один из видов алгебраических типов данных, который характеризуется тем, что его конструкторы могут возвращать значения не своего типа. Это понятие реализовано в нескольких языках программирования, в частности в языках ML и Haskell, причём в… …   Википедия

Поделиться ссылкой на выделенное

Прямая ссылка:
Нажмите правой клавишей мыши и выберите «Копировать ссылку»